Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(2): e0041022, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35384690

RESUMO

Multiwalled carbon nanotubes (MWCNTs) regularly enter aquatic environments due to their ubiquity in consumer products and engineering applications. However, the effects of MWCNT pollution on the environmental microbiome are poorly understood. Here, we evaluated whether these carbon nanoparticles can elevate the spread of antimicrobial resistance by promoting bacterial plasmid transfer, which has previously been observed for copper nanomaterials with antimicrobial properties as well as for microplastics. Through a combination of experimental liquid mating assays between Pseudomonas putida donor and recipient strains with plasmid pKJK5::gfpmut3b and mathematical modeling, we here demonstrate that the presence of MWCNTs leads to increased plasmid transfer rates in a concentration-dependent manner. The percentage of transconjugants per recipient significantly increased from 0.21 ± 0.04% in absence to 0.41 ± 0.09% at 10 mg L-1 MWCNTs. Similar trends were observed when using an Escherichia coli donor hosting plasmid pB10. The identified mechanism underlying the observed dynamics was the agglomeration of MWCNTs. A significantly increased number of particles with >6 µm diameter was detected in the presence of MWCNTs, which can in turn provide novel surfaces for bacterial interactions between donor and recipient cells after colonization. Fluorescence microscopy confirmed that MWCNT agglomerates were indeed covered in biofilms that contained donor bacteria as well as elevated numbers of green fluorescent transconjugant cells containing the plasmid. Consequently, MWCNTs provide bacteria with novel surfaces for intense cell-to-cell interactions in biofilms and can promote bacterial plasmid transfer, hence potentially elevating the spread of antimicrobial resistance. IMPORTANCE In recent decades, the use of carbon nanoparticles, especially multiwalled carbon nanotubes (MWCNTs), in a variety of products and engineering applications has been growing exponentially. As a result, MWCNT pollution into environmental compartments has been increasing. We here demonstrate that the exposure to MWCNTs can affect bacterial plasmid transfer rates in aquatic environments, an important process connected to the spread of antimicrobial resistance genes in microbial communities. This is mechanistically explained by the ability of MWCNTs to form bigger agglomerates, hence providing novel surfaces for bacterial interactions. Consequently, increasing pollution with MWCNTs has the potential to elevate the ongoing spread of antimicrobial resistance, a major threat to human health in the 21st century.


Assuntos
Nanotubos de Carbono , Antibacterianos/farmacologia , Bactérias/genética , Escherichia coli/genética , Humanos , Plasmídeos/genética , Plásticos/farmacologia
2.
J Hazard Mater ; 423(Pt B): 127155, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34555761

RESUMO

Treated wastewater irrigation (TWW) releases antibiotics and antibiotic resistance genes (ARGs) into the environment and might thus promote the dissemination of antibiotic resistance in groundwater (GW). We hypothesized that TWW irrigation increases ARG abundance in GW through two potential mechanisms: the contamination of GW with resistant bacteria and the accumulation of antibiotics in GW. To test this, the GW below a real-scale TWW-irrigated field was sampled for six months. Sampling took place before, during and after high-intensity TWW irrigation. Samples were analysed with 16S rRNA amplicon sequencing, qPCR of six ARGs and the class 1 integron-integrase gene intI1, while liquid chromatography tandem mass spectrometry was performed to detect antibiotic and pharmaceutical residues. Absolute abundance of 16S rRNA in GW decreased rather than increased during long-term irrigation. Also, the relative abundance of TWW-related bacteria did not increase in GW during long-term irrigation. In contrast, long-term TWW irrigation increased the relative abundance of sul1 and intI1 in the GW microbiome. Furthermore, GW contained elevated concentrations of sulfonamide antibiotics, especially sulfamethoxazole, to which sul1 confers resistance. Total sulfonamide concentrations in GW correlated with sul1 relative abundance. Consequently, TWW irrigation promoted sul1 and intI1 dissemination in the GW microbiome, most likely due to the accumulation of drug residues.


Assuntos
Água Subterrânea , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Águas Residuárias/análise
3.
Water Res ; 193: 116818, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571903

RESUMO

Treated wastewater (TWW) irrigation is a useful counter-measure against the depletion of freshwater (FW) resources. However, TWW contains several contaminants of emerging concern, such as antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs). Thus, TWW irrigation might promote the spread of antimicrobial resistance in soil environments. In the present work, we hypothesized that the ARG load and irrigation intensity define the effect of TWW irrigation on ARG spread dynamics in soil. This hypothesis was tested using a multiphase approach: a) comparing soil from a full-scale, commercially operated, TWW irrigated field with non-irrigated soil, b) long-term sampling of the TWW irrigated field over one year with different irrigation intensities and intercepted by irrigation breaks and c) laboratory-scale soil microcosms irrigated with TWW compared to FW. Six ARGs, the integrase gene intI1 and the 16S rRNA were quantified using qPCR. In addition, effects of TWW irrigation on bacterial community composition of microcosm-samples were analysed with 16S rRNA amplicon sequencing. The genes sul1, qnrS, blaOXA-58, tet(M) and intI1 were significantly more abundant in the TWW irrigated field soil, whereas blaCTX--M-32 and blaTEM, the least abundant genes in the TWW irrigation, showed higher abundance in the non-irrigated soil. The relative abundance of sul1, qnrS, blaOXA-58, tet(M) and intI1 correlated with TWW irrigation intensity and decreased during irrigation breaks. Despite the decrease, the levels of these genes remained consistently higher than the non-irrigated soil indicating persistence upon their introduction into the soil. Microcosm experiments verified observations from the field study: TWW irrigation promoted the spread of ARGs and intI1 into soil at far elevated levels compared to FW irrigation. However, the impact of TWW irrigation on 16S rRNA absolute abundance and the soil microbial community composition was negligible. In conclusion, the impact of TWW irrigation depends mainly on the introduced ARG load and the irrigation intensity.


Assuntos
Microbiota , Águas Residuárias , Irrigação Agrícola , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos , Farmacorresistência Bacteriana , Genes Bacterianos , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
4.
Environ Int ; 146: 106190, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120226

RESUMO

In the present study, we investigated the impact of treated wastewater (TWW) irrigation on the prevalence of antibiotic resistance genes (ARGs) in subsoil pore-water, a so-far under-appreciated matrix. We hypothesized that TWW irrigation increases ARG prevalence in subsoil pore-water. This hypothesis was tested using a multiphase approach, which consisted of sampling percolated subsoil pore-water from lysimeter-wells of a real-scale TWW-irrigated field, operated for commercial farming practices, and controlled, laboratory microcosms irrigated with freshwater or TWW. We monitored the abundance of six selected ARGs (sul1, blaOXA-58, tetM, qnrS, blaCTX-M-32 and blaTEM), the intI1 gene associated with mobile genetic elements and an indicator for anthropogenic pollution and bacterial abundance (16S rRNA gene) by qPCR. The bacterial load of subsoil pore water was independent of both, irrigation intensity in the field study and irrigation water type in the microcosms. Among the tested genes in the field study, sul1 and intI1 exhibited constantly higher relative abundances. Their abundance was further positively correlated with increasing irrigation intensity. Controlled microcosm experiments verified the observed field study results: the relative abundance of several genes, including sul1 and intI1, increased significantly when irrigating with TWW compared to freshwater irrigation. Overall, TWW irrigation promoted the spread of ARGs and intI1 in the subsoil pore-water, while the bacterial load was maintained. The combined results from the real-scale agricultural field and the controlled lab microcosms indicate that the dissemination of ARGs in various subsurface environments needs to be taken into account during TWW irrigation scenarios.


Assuntos
Irrigação Agrícola , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Microbiologia do Solo , Águas Residuárias/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...